Eksplorasi Senyawa Kulit Kopi sebagai Anti Covid-19 Melalui Penghambatan 3C-Like Protease

  • Yohanes Bare Universitas Nusa Nipa
  • Frederiksen Novenrius Sini Timba Universitas Nusa Nipa
  • Maria Marcelina Dua Nurak Universitas Nusa Nipa
  • Marsiana Coo Mogi Universitas Nusa Nipa

Abstract

Corona virus 19 menjadi pandemic di dunia saat ini, oleh karena itu perlu dilakukan terapi sehingga menurunkan prevalensi di Indonesia dengan menghambat protein yang terlibat dalam virus corona (3CL Protease). Salah satunya pemanfaatan bahan alam yang tidak terpakai. Kulit kopi merupakan material sisa dari pengolahan biji kopi. Satu ton ampas kopi akan terbentuk dari 2 ton kopi yang diproduksi dan berdampak terhadap masalah lingkungan. Kulit kopi memiliki berbagai macam senyawa yang masih dibutuhkan. Produksi kopi Tujuan penelitian ini adalah pemanfaatan bahan aktif kulit kopi sebagai nutrisi tingkat gen dengan menghambat kinerja 3C-like protease (3CLPro). Metode penelitian in silico, senyawa kulit kopi Hexosa (ID. 206), Malic acid (ID. 525), D-manitol (ID. 88038555) diunduh dari PubChem, protein 3CL Protease diunduh dari database protein data bank (PDB) dengan ID 2zu2 diimport ke software Molegro virtual docker 5 dan dilakukan preparasi. Selanjutnya protein target diprediksi cavity (sisi aktif protein) dengan parameter expand van der Waals maximum 10. Hasil docking dilakukan superimposed dengan protein yang telah dipreparasi menggunakan software PyMol. Visualisasi hasil docking dilakukan menggunakan perangkat lunak HEX 8.0.0.0. Hasil penelitian senyawa yang terkandung dalam kulit kopi memiliki potensi sebagai anti covid-19, hal ini dibuktikan dengan aktivitas senyawa Hexosa, Malic acid, D-manitol yang mengikat masing-masing enam residu asam amino. Pengikatan terhadap delapan belas residu asam amino yang berbeda diprediksi menjadi alternatif nutrisi dengan menghambat 3CL Protease.

Downloads

Download data is not yet available.
Keywords: 3CL Protease, covid-19, D-manito, hexosa, kulit kopi, malic acid

References

Alexpandi, R., De Mesquita, J. F., Pandian, S. K., & Ravi, A. V. (2020). Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis. Frontiers in Microbiology, 11, 1796. https://doi.org/10.3389/fmicb.2020.01796

Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142

Bare, Y. (2022). Interaction Phloroglucinol as inflammation therapy through Cyclooxygenase-2 (COX-2) gene inhibition. Jurnal Ilmiah Medicamento, 8(1), 14–21. https://doi.org/10.36733/medicamento.v8i1.3162

Bare, Y., Krisnamurti, G. C., Elizabeth, A., Rachmad, Y. T., Sari, D. R. T., & Lorenza, Ma. R. W. (2019). The potential role of caffeic acid in coffee as cyclooxygenase-2 (COX-2) inhibitor: In silico study. Biointerface Research in Applied Chemistry, 9(5), 4424–4427. https://doi.org/10.33263/BRIAC95.424427

Bare, Y., & Sari, D. R. T. (2021). Pengembangan Lembar Kerja Mahasiswa (LKM) Berbasis Inkuiri Pada Materi Interaksi Molekuler. BioEdUIN, 11(1), 8. https://doi.org/10.15575/bioeduin.v11i1.12077

Bare, Y., Sari, D. R. T., Rachmad, Y. T., Krisnamurti, G. C., & Elizabeth, A. (2019). In Silico Insight the Prediction of Chlorogenic Acid in Coffee through Cyclooxygenase-2 (COX2) Interaction. Biogenesis: Jurnal Ilmiah Biologi, 7(2), 100–105. https://doi.org/10.24252/bio.v7i2.9847

Bitencourt-Ferreira, G., & de Azevedo, W. F. J. (2019). Molegro Virtual Docker for Docking. Methods in Molecular Biology (Clifton, N.J.), 2053, 149–167. https://doi.org/10.1007/978-1-4939-9752-7_10

Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P., & Mirza, W. (2017). Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00006

Chen, Y. W., Yiu, C. P. B., & Wong, K. Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. ChemRxiv, 2, 1–17. https://doi.org/10.26434/chemrxiv.11831103.v2

Duangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N., & Yosboonruang, A. (2016). Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research, 5(4), 324–331. https://doi.org/10.1016/j.imr.2016.09.001

Elfi, T. N., Bunga, Y. N., & Bare, Y. (2021). Studi Aktivitas Biologi Secara In Silico Senyawa Nonivamide Dan Nordihydrocapsaicin Sebagai Anti Inflamasi. Florea : Jurnal Biologi dan Pembelajarannya, 8(2), 82. https://doi.org/10.25273/florea.v8i2.9983

Inbathamizh, L., & Padmini, E. (2013). QUINIC ACID AS A POTENT DRUG CANDIDATE FOR PROSTATE CANCER – A COMPARATIVE PHARMACOKINETIC APPROACH. 6(4), 7. https://doi.org/10.1111/cbdd.12498

Jo, S., Kim, S., Kim, D. Y., Kim, M.-S., & Shin, D. H. (2020). Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1539–1544. https://doi.org/10.1080/14756366.2020.1801672

Lee, C. C., Kuo, C. J., Hsu, M. F., Liang, P. H., Fang, J. M., Shie, J. J., & Wang, A. H. J. (2007). Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors. FEBS Letters, 581(28), 5454–5458. https://doi.org/10.1016/j.febslet.2007.10.048

Ozaki, T., & Nakagawara, A. (2011). Role of p53 in Cell Death and Human Cancers. Cancers, 3(1), 994–1013. https://doi.org/10.3390/cancers3010994

Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S. H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461

Regulski, M., Piotrowska-Kempisty, H., Prukała, W., Dutkiewicz, Z., Regulska, K., Stanisz, B., & Murias, M. (2018). Synthesis, in vitro and in silico evaluation of novel trans -stilbene analogues as potential COX-2 inhibitors. Bioorganic & Medicinal Chemistry, 26(1), 141–151. https://doi.org/10.1016/j.bmc.2017.11.027

Schröter, D., Neugart, S., Schreiner, M., Grune, T., Rohn, S., & Ott, C. (2019). Amaranth’s 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages. Nutrients, 11(3), 571. https://doi.org/10.3390/nu11030571

Shi, H., Dong, L., Jiang, J., Zhao, J., Zhao, G., Dang, X., Lu, X., & Jia, M. (2013). Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology, 303, 107–114. https://doi.org/10.1016/j.tox.2012.10.025

Wang, H., He, S., Deng, W., Zhang, Y., Li, G., Sun, J., Zhao, W., Guo, Y., Yin, Z., Li, D., & Shang, L. (2020). Comprehensive Insights into the Catalytic Mechanism of Middle East Respiratory Syndrome 3C-Like Protease and Severe Acute Respiratory Syndrome 3C-Like Protease. ACS Catalysis, 10(10), 5871–5890. https://doi.org/10.1021/acscatal.0c00110

Published
2022-06-07
How to Cite
Yohanes Bare, Frederiksen Novenrius Sini Timba, Maria Marcelina Dua Nurak, & Marsiana Coo Mogi. (2022). Eksplorasi Senyawa Kulit Kopi sebagai Anti Covid-19 Melalui Penghambatan 3C-Like Protease. JURNAL PENDIDIKAN MIPA, 12(2), 127-133. https://doi.org/10.37630/jpm.v12i2.563
Abstract viewed = 420 times
PDF downloaded = 443 times