Analisis Keterampilan Praktik Ilmiah Siswa dalam Pembelajaran IPA SMP berciri Inkuiri Induktif

Abstract

Pembelajaran berciri inkuiri telah mendominasi aktivitas belajar IPA di sekolah secara internasional. Pengembangan budaya ilmiah telah menjadi salah satu tujuan pendidikan IPA yang ditandai dengan keterampilan praktik ilmiah yang menekankan pada indikator keterampilan manipulatif/psikomotor dan keterampilan proses sains. Studi ini berusaha untuk menemukan, mengungkap, dan menganalisis atribut-atribut keterampilan praktik ilmiah dalam pembelajaran IPA dengan pendekatan inkuiri induktif terbimbing sebagai intervensi. Studi ini menerapkan pendekatan pra-eksperimen pada skala mikro dengan mengutamakan classroom natural setting. Partisipan yang terlibat dalam studi ini sebanyak 30 orang siswa kelas VII SMP. Proses belajar-mengajar di kelas disesuaikan dengan tahapan pendekatan inkuiri induktif terbimbing. Pengukuran atas performa siswa dilakukan secara langsung saat unjuk kerja, maupun tidak langsung berdasarkan jawaban partisipan di lembar kerja. Berdasarkan hasil data hasil keterampilan praktik ilmiah serta analisis pola transisi respons (retensi, gain, dan loss), studi ini mengonfirmasikan bahwa pendekatan inkuiri induktif terbimbing dapat mengenalkan dan meningkatkan keterampilan praktik ilmiah siswa. Kemampuan siswa untuk memanipulasi objek yang diteliti sesuai prosedur eksperimen, mengembangkan hipotesis tentatif, dan memprediksi berdasarkan data hasil eksperimen perlu menjadi perhatian para guru IPA dalam mengembangkan perangkat pembelajaran. Meskipun ada beberapa batasan, studi ini juga membahas beberapa hal terkait pengembangan profesionalitas dan pedagogi guru IPA untuk mewujudkan budaya ilmiah dalam kelas.

Downloads

Download data is not yet available.

Author Biography

Muhamad Arif Mahdiannur, Universitas Negeri Surabaya

Jurusan IPA, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya

Keywords: Inkuiri Induktif, Keterampilan Praktik Ilmiah, Keterampilan Manipulatif/Psikomotor, Keterampilan Proses Sains, Pembelajaran IPA

References

Abrahams, I., Reiss, M. J., & Sharpe, R. M. (2013). The assessment of practical work in school science. Studies in Science Education, 49(2), 209–251. https://doi.org/10.1080/03057267.2013.858496
Aditomo, A., & Klieme, E. (2020). Forms of inquiry-based science instruction and their relations with learning outcomes: evidence from high and low-performing education systems. International Journal of Science Education, 42(4), 504–525. https://doi.org/10.1080/09500693.2020.1716093
Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—what kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749. https://doi.org/10.1080/09500693.2014.930209
Bansal, G. (2021). Indian pre-service teachers’ conceptualisations and enactment of inquiry-based science education. Education 3-13, 49(3), 275–287. https://doi.org/10.1080/03004279.2020.1854957
Davidson, S. G., Jaber, L. Z., & Southerland, S. A. (2022). Cultivating science teachers’ understandings of science as a discipline. Science & Education, 31(3), 657–683. https://doi.org/10.1007/s11191-021-00276-1
El Masri, Y. H., Erduran, S., & Ioannidou, O. (2021). Designing practical science assessments in England: Students’ engagement and perceptions. Research in Science & Technological Education, 1–21. https://doi.org/10.1080/02635143.2021.1872519
Fadzil, H. M., & Saat, R. M. (2014). Exploring the influencing factors in students’ acquisition of manipulative skills during transition from primary to secondary school. Asia-Pacific Forum on Science Learning and Teaching, 15(2), Article 3, 1-18. https://www.eduhk.hk/apfslt/v15_issue2/fadzil/index.htm
Fraser, J. M., Timan, A. L., Miller, K., Dowd, J. E., Tucker, L., & Mazur, E. (2014). Teaching and physics education research: Bridging the gap. Reports on Progress in Physics, 77(3), 032401. https://doi.org/10.1088/0034-4885/77/3/032401
Herranen, J., & Aksela, M. (2019). Student-question-based inquiry in science education. Studies in Science Education, 55(1), 1–36. https://doi.org/10.1080/03057267.2019.1658059
Inan, H. Z., & Inan, T. (2015). 3 H s Education: Examining hands-on, heads-on and hearts-on early childhood science education. International Journal of Science Education, 37(12), 1974–1991. https://doi.org/10.1080/09500693.2015.1060369
Kota, S. D., Cornish, S., & Sharma, M. D. (2019). Switched on! Student and teacher engagement in an electricity practical. Physics Education, 54(1), 015007. https://doi.org/10.1088/1361-6552/aadeee
Kuang, X., Eysink, T. H. S., & Jong, T. (2020). Effects of providing partial hypotheses as a support for simulation‐based inquiry learning. Journal of Computer Assisted Learning, 36(4), 487–501. https://doi.org/10.1111/jcal.12415
Lasry, N., Guillemette, J., & Mazur, E. (2014). Two steps forward, one step back. Nature Physics, 10(6), 402–403. https://doi.org/10.1038/nphys2988
Lou, Y., Blanchard, P., & Kennedy, E. (2015). Development and validation of a science inquiry skills assessment. Journal of Geoscience Education, 63(1), 73–85. https://doi.org/10.5408/14-028.1
Mutlu, A. (2020). Evaluation of students’ scientific process skills through reflective worksheets in the inquiry-based learning environments. Reflective Practice, 21(2), 271–286. https://doi.org/10.1080/14623943.2020.1736999
Oberfoell, A., & Correia, A. (2016). Understanding the role of the modality principle in multimedia learning environments. Journal of Computer Assisted Learning, 32(6), 607–617. https://doi.org/10.1111/jcal.12157
Öberg, G., Campbell, A., Fox, J., Graves, M., Ivanochko, T., Matsuchi, L., Mouat, I., & Welsh, A. (2022). Teaching science as a process, not a set of facts. Science & Education, 31(3), 787–817. https://doi.org/10.1007/s11191-021-00253-8
Orlich, D. C., Harder, R. J., Callahan, R. C., Trevisan, M. S., & Brown, A. H. (2010). Teaching strategies: A guide to effective instruction (9th ed.). Wadsworth Publishing.
Penn, M., & Ramnarain, U. (2022). South African grade 12 science students’ understandings of scientific inquiry. Science & Education, 31(3), 635–656. https://doi.org/10.1007/s11191-021-00259-2
Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129. https://doi.org/10.1080/03057267.2014.881626
Sermsirikarnjana, P., Kiddee, K., & Pupat, P. (2017). An integrated science process skills needs assessment analysis for Thai vocational students and teachers. Asia-Pacific Forum on Science Learning and Teaching, 18(2), Article 3, 1-25. https://www.eduhk.hk/apfslt/v18_issue2/pongsuwat/index.htm
Sheeba, M. N. (2012). Relation of achievement in science and certain context variables with comprehensive science process measures at the secondary school level [University of Kerala]. http://hdl.handle.net/10603/12780
Sokolowski, A. (2014). Modelling rate for change of speed in calculus proposal of inductive inquiry. International Journal of Mathematical Education in Science and Technology, 45(2), 174–189. https://doi.org/10.1080/0020739X.2013.790511
Soysal, Y. (2022). Middle school science teachers’ discursive purposes and talk moves in supporting students’ experiments. Science & Education, 31(3), 739–785. https://doi.org/10.1007/s11191-021-00266-3
Stage, E. K., Asturias, H., Cheuk, T., Daro, P. A., & Hampton, S. B. (2013). Opportunities and challenges in next generation standards. Science, 340(6130), 276–277. https://doi.org/10.1126/science.1234011
Tran, T.-B., van den Berg, E., Ellermeijer, T., & Beishuizen, J. (2018). Learning to teach inquiry with ICT. Physics Education, 53(1), 015003. https://doi.org/10.1088/1361-6552/aa8a4f
Vekli, G. S. (2021). What factors affect middle school students’ perceptions of inquiry learning towards science? Pedagogical Research, 6(4), em0108. https://doi.org/10.29333/pr/11301
Wecker, C., Rachel, A., Heran-Dörr, E., Waltner, C., Wiesner, H., & Fischer, F. (2013). Presenting theoretical ideas prior to inquiry activities fosters theory-level knowledge. Journal of Research in Science Teaching, 50(10), 1180–1206. https://doi.org/10.1002/tea.21106
Wei, B., Jiang, Z., & Gai, L. (2022). Examining the nature of practical work in school science textbooks: Coverage of the diversity of scientific methods. Science & Education, 31(4), 943–960. https://doi.org/10.1007/s11191-021-00294-z
Published
2022-09-19
How to Cite
Muhamad Arif Mahdiannur. (2022). Analisis Keterampilan Praktik Ilmiah Siswa dalam Pembelajaran IPA SMP berciri Inkuiri Induktif. JURNAL PENDIDIKAN MIPA, 12(3), 850-858. https://doi.org/10.37630/jpm.v12i3.705
Abstract viewed = 20 times
PDF downloaded = 11 times