Tahap-tahap Menyelesaikan Masalah Geometri melalui Interaksi Berpikir pada Aktivitas Kognitif Siswa SMP

  • Syarifudin STKIP Taman Siswa Bima
  • Ummu Fikriyah SMPN 4 Nguling

Abstract

Perubahan pengetahuan siswa sebagai hasil pengalaman belajar merupakan hal utaman yang diharapkan dalam proses pembelajaran. Perubahan pengetahuan itu salah satunya melalui kegiatan interaksi berpikir. Tujuan dalam penelitian ini untuk mendeskripsikan tahap-tahap aktivitas kognitif siswa melalui kegiatan interakasi berpikir dalam memecahkan masalah geometri. Penelitian ini dilaksanakan pada 5 orang siswa SMP yang berkemampuan tinggi dan sedang. Hasil penelitian menunjukkan bahwa kegiatan kelima siswa dalam mendiskusikan permasalahan yang diawali dari siswa yang berkemampuan tinggi memberikan penjelasan tentang cara menjawab soal yang diberikan. Siswa yang lainnya mendengarkan dan kadang-kadang merespon dari penjelasan yang disampaikan oleh siswa yang berkemampuan tinggi tersebut. Kegiatan selanjutnya adalah mereka bersama-sama mendiskusikan dan saling membantu untuk mencari solusi dari permasalah yang diberikan dengan menyampaikan pertanyaan atau penjelasan antara satu siswa dengan siswa yang lainnya. Kegitan ini terus dilakukan sampai menemukan satu solusi yang tepat untuk diputuskan bersama-sama lalu ditulis dalam lembar jawaban masing-masing. Setelah mereka menulis jawaban masing-masing, ternyata bentuk jawaban yang dituliskan berbeda-beda dan ada juga yang masih melihat jawaban dari temannya.

Downloads

Download data is not yet available.
Keywords: Aktivitas Kognitif, Interkasi Berpikir, Masalah Geometri

References

Anderson, L. W., & Krathwohl, D. R. (2010). Kerangka landasan untuk pembelajaran, pengajaran, dan asesmen. Yogyakarta: Pustaka Pelajar, 300(300), 0.
Bado, N., & Franklin, T. (2014). Cooperative Game-based Learning in the English as a Foreign Language Classroom. Issues and Trends in Educational Technology, 2(2), 1–17. https://doi.org/10.2458/azu_itet_v2i2_bado
Barnard, T., & Tall, D. (1997). Cognitive units, connections and mathematical proof. PME Conference, 2, 2–41.
Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the Learning Sciences, 9(4), 403–436. https://doi.org/10.1207/S15327809JLS0904_2
Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12(3), 307–359. https://doi.org/10.1207/S15327809JLS1203_1
Bishop, J. P. (2012). “She’s always been the smart one. I’ve always been the dumb one”: Identities in the mathematics classroom. Journal for Research in Mathematics Education, 43(1), 34–74. https://doi.org/10.5951/jresematheduc.43.1.0034
Chen, Y. (2008). from Formal Proofs to Informal Proofs-Teaching Mathematical Proofs with the Help Of Formal Proofs. International Journal of Case Method Research & Application, XX(4), 398–402.
Francisco, J. M. (2013). Learning in collaborative settings: Students building on each other’s ideas to promote their mathematical understanding. Educational Studies in Mathematics, 82(3), 417–438. https://doi.org/10.1007/s10649-012-9437-3
Gresalfi, M., Martin, T., Hand, V., & Greeno, J. (2009). Constructing competence: An analysis of student participation in the activity systems of mathematics classrooms. Educational Studies in Mathematics, 70(1), 49–70. https://doi.org/10.1007/s10649-008-9141-5
Jenness, V., Smith, D. A., & Stepan-Norris, J. (2007). Advances in Sociological Thinking about Interaction: Ritual Chains, Institutional Talk, Cognition, Humor, and Laughter. Contemporary Sociology: A Journal of Reviews, 36(3), vii–viii. https://doi.org/10.1177/009430610703600302
Johnson, D. W., Johnson, R. T., & Smith, K. (2007). The state of cooperative learning in postsecondary and professional settings. Educational Psychology Review, 19(1), 15–29. https://doi.org/10.1007/s10648-006-9038-8
Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). Toward networking three theoretical approaches: The case of social interactions. ZDM - International Journal on Mathematics Education, 40(2), 247–264. https://doi.org/10.1007/s11858-008-0079-y
Kumpulainen, K., & Mutanen, M. (1999). The situated dynamics of peer group interaction: An introduction to an analytic framework. Learning and Instruction, 9(5), 449–473. https://doi.org/10.1016/S0959-4752(98)00038-3
Lai, K., & White, T. (2014). How groups cooperate in a networked geometry learning environment. Instructional Science, 42(4), 615–637. https://doi.org/10.1007/s11251-013-9303-4
Leatham, K. R., Peterson, B. E., Stockero, S. L., & Van Zoest, L. R. (2015). Conceptualizing mathematically significant pedagogical opportunities to build on student thinking. Journal for Research in Mathematics Education, 46(1), 88–124. https://doi.org/10.5951/jresematheduc.46.1.0088
Mercer, N. (1995). The guided construction of knowledge: Talk amongst teachers and learners. Multilingual matters.
Mercer, N., Wegerif, R., & Dawes, L. (1999). Children’s talk and the development of reasoning in the classroom. British Educational Research Journal, 25(1), 95–111.
Mueller, M., Yankelewitz, D., & Maher, C. (2012). A framework for analyzing the collaborative construction of arguments and its interplay with agency. Educational Studies in Mathematics, 80(3), 369–387. https://doi.org/10.1007/s10649-011-9354-x
Nilsson, P., & Ryve, A. (2010). Focal event, contextualization, and effective communication in the mathematics classroom. Educational Studies in Mathematics, 74(3), 241–258. https://doi.org/10.1007/s10649-010-9236-7
Radford, L. (2011). Book Review: Classroom Interaction: Why is it Good, Really? Baruch Schwarz, Tommy Dreyfus and Rina Hershkowitz (Eds.) (2009) Transformation of knowledge through classroom interaction. Educational Studies in Mathematics, 76(1), 101–115. https://doi.org/10.1007/s10649-010-9271-4
Sánchez, V., García, M., & Escudero, I. (2013). An analytical framework for analyzing student teachers’ verbal interaction in learning situations. Instructional Science, 41(2), 247–269. https://doi.org/10.1007/s11251-012-9226-5
Santagata, R., Zannoni, C., & Stigler, J. W. (2007). The role of lesson analysis in pre-service teacher education: An empirical investigation of teacher learning from a virtual video-based field experience. Journal of Mathematics Teacher Education, 10(2), 123–140. https://doi.org/10.1007/s10857-007-9029-9
Sfard, A., & Kieran, C. (2001a). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students’ mathematical interactions. Mind, Culture, and Activity, 8(1), 42–76.
Sfard, A., & Kieran, C. (2001b). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students’ mathematical interactions. Mind, Culture, and Activity, 8(1), 42–76. https://doi.org/10.1207/S15327884MCA0801_04
Solso, R. L., Maclin, O. H., & Maclin, M. K. (2008). Psikologi Kognitif Edisi Kedelapan (terjemahan). Erlangga, Jakarta.
Stacey, K. (2014). What Is Mathematical Thinking and Why Is It Important? Research in Mathematics Education, 15(2), 330–348. http://login.ezproxy.lib.umn.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=eric&AN=EJ1018630&site=ehost-live
Stockero, S. L., & Van Zoest, L. R. (2013). Characterizing pivotal teaching moments in beginning mathematics teachers’ practice. Journal of Mathematics Teacher Education, 16(2), 125–147. https://doi.org/10.1007/s10857-012-9222-3
Strom, D., Kemeny, V., Lehrer, R., & Forman, E. (2001). Visualizing the emergent structure of children’s mathematical argument. Cognitive Science, 25(5), 733–773. https://doi.org/10.1016/S0364-0213(01)00052-0
Subanji, S. (2016). Berpikir pseudo penalaran kovariasi dalam mengkonstruksi grafik fungsi kejadian dinamik: Sebuah analisis berdasarkan kerangka kerja VL2P dan implikasinya pada pembelajaran matematika. Jurnal Ilmu Pendidikan, 13(1).
Syarifudin, Purwanto, Irawan, E. B., Sulandra, I. M., & Fikriyah, U. (2019). Student verbal interaction in geometry problem-solving through cognitive activities. International Journal of Instruction, 12(3), 167–182. https://doi.org/10.29333/iji.2019.12311a
Van Zoest, L. R., Stockero, S. L., Leatham, K. R., Peterson, B. E., Atanga, N. A., & Ochieng, M. A. (2017). Attributes of Instances of Student Mathematical Thinking that Are Worth Building on in Whole-Class Discussion. Mathematical Thinking and Learning, 19(1), 33–54. https://doi.org/10.1080/10986065.2017.1259786
Watson, J. M., & Chick, H. L. (2001). Factors Influencing the Outcomes of Collaborative Mathematical Problem Solving: An Introduction. Mathematical Thinking and Learning, 3(2–3), 125–173. https://doi.org/10.1080/10986065.2001.9679971
Weber, K., Maher, C., Powell, A., & Lee, H. S. (2008). Learning opportunities from group discussions: Warrants become the objects of debate. Educational Studies in Mathematics, 68(3), 247–261. https://doi.org/10.1007/s10649-008-9114-8
Published
2021-08-29
How to Cite
Syarifudin, & Ummu Fikriyah. (2021). Tahap-tahap Menyelesaikan Masalah Geometri melalui Interaksi Berpikir pada Aktivitas Kognitif Siswa SMP. JURNAL PENDIDIKAN MIPA, 11(1), 27-35. https://doi.org/10.37630/jpm.v11i1.450
Abstract viewed = 59 times
PDF downloaded = 36 times